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Abstract. Within an extended Su-Schrieffer-Heeger model, we made a lattice vibrational analysis of poly-
acene. In a singly-charged polyacene, the ground state contains an interchain-coupled polaron of quasi-D2h

symmetry, around which we found thirteen localized modes in total. Among these localized modes, five
(three B2u and two B3u) are infrared active, six (four Ag and two B1g) modes are Raman active, and the
other two localized modes are asymmetric, which are both infrared active and Raman active. For the case
a charged polaron is coupled with a neutral soliton in a finite polyacene chain, the vibrational modes are
also calculated to display the coupling effect between self-trapping excitations on phonons. It is found that
the localized phonons are determined mainly by the charged polaron, but the number and frequencies of
the localized modes are influenced by the existence of the neutral soliton.

PACS. 63.22.+m Phonons or vibrational states in low-dimensional structures and nanoscale materials –
63.20.Pw Localized modes

1 Introduction

There have been considerable amounts of research works
devoted to the properties of nonlinear elementary exci-
tations in conjugated polymers, such as soliton, polaron
and polaron-exciton [1,2]. The motivation behind these
works stems from the fact that these excitations play an
important role in optoelectric devices based on conjugated
polymers, including field-effect transistors, light-emitting
diodes, photocells and lasers [3–9]. The localized phonon
modes can be considered as the fingerprint [10,11] of these
nonlinear excitations, therefore, it is very interesting to
investigate the vibrational modes in order to understand
dynamic properties of various self-trapping elementary ex-
citations in conjugated polymers.

Polyacene, as a novel conducting polymer, has long
been the focus of theoretical studies [9,10,12–24], though
a long polyacene chain has not been synthesized yet.
Polyacene, linearly fused aromatic rings, can be consid-
ered as two polyacetylene chains strongly coupled by
cross alternate interactions. Much theoretical works have
been devoted to the ground state of an infinite poly-
acene chain [12–19], that is the polyacene composed of
an infinite-number aromatic rings with a periodic bound-
ary condition (PBC), where the ground state of a neutral
polyacene is perfectly dimerized and an interchain-coupled
polaron exists in a singly-charged polyacene. In an earlier
paper [23], we have investigated the self-trapping excita-
tions and absorption spectrum of a polyacene chain com-
posed of a finite-number aromatic rings with open bound-
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ary condition (OBC). With the OBC, while an interchain
neutral soliton was found in a pristine polyacene chain,
there exist an interchain polaron being coupled with the
neutral soliton in a singly charged polyacene chain [23].
In a previous paper [10], we have primarily investigated
the localized phonon modes around the interchain neu-
tral soliton and gave out quite different results from that
in polyacetylene. In this paper, we will report a system-
atic investigation on the phonon modes of a singly charged
polyacene chain, which is composed of aromatic rings with
either the OBC or the PBC. While the localized phonon
modes around the interchain-coupled polaron are obtained
by a numerical method, the extended phonon spectra are
given out analytically in a pristine polyacene chain with
the PBC. Finally, the coupling effect of the neutral soli-
ton and the charged polaron on localized phonon modes
is figured out.

This paper is organized as follows. The theoretical
model and numerical method employed in this work are
described in Section 2. The numerical results are given in
Sections 3 and 4. Then a summary is given in Section 5
and an analytic evolution on the extended phonon spectra
is given in the Appendix.

2 Model and method

Since a polyacene chain can be considered as two
polyacetylene chains with alternate interchain cou-
pling, we use the following extended Su-Schrieffer-Heeger
model [10,20–23]:

H = He + Hint + Hp, (1)
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where

He = −
∑

j,n,σ

[t0+α(uj,n−uj,n+1)](c
†
j,n,σcj,n+1,σ+h.c.) (2)

describes the intra-chain interactions,
Hint = −

∑

n,σ

[t1 − (−1)nt2](c
†
1,n,σc2,n,σ + h.c.) (3)

describes the interchain interactions, and

Hp =
1
2
K
∑

j,n

(uj,n − uj,n+1)2 +
1
2
M
∑

j,n

u̇2
j,n (4)

gives the lattice elastic and kinetic energies. In equa-
tions (2−4), j (= 1, 2) denotes the chain index, the quan-
tity t0 is the transfer integral for π-electrons in a regular
lattice, α the electron-lattice coupling constant, and uj,n

the lattice displacement of the nth site on chain j from
its equidistant position. The operator c†j,n,σ(cj,n,σ) creates
(annihilates) a π-electron with spin σ at the n-th site on
chain j, and K the elastic constant due to the σ-bonds.
t1 and t2 describe the alternate interchain interactions,
and t1 = t2 corresponds to the case of polyacene. Ab initio
calculations on short polyacene chains have shown that
the bonds between the two chains are slightly longer than
the single bond in the chain, so we would like to use
2t1 = 0.864t0 in our calculations. The other quantities are
taken as follows [10,20–23]: t0 = 2.5 eV, α = 4.1 eVÅ−1,
K = 15.5 eVÅ−2; then the dimensionless electron-lattice
coupling constant λ(≡ 2α2/πt0K) = 0.276, which is larger
than that for polyacetylene [2].

For the Peierls ground state of a polyacene chain
with PBC, we have uj,n = (−1)nu

(j)
0 , like the case of

polyacetylene, where the electronic part of the Hamil-
tonian in (1) can be diagonalized by the Bogoliubov
transformation (for details, see Appendix). The en-
ergy spectrum is the same for both the alternate cis
(u(1)

0 ≡ u
(2)
0 ) and trans (u(1)

0 ≡ −u
(2)
0 ) configurations [23].

It has been known [10,23] that the bond configuration
will be always in the cis-phase, i.e., uj,n ≡ un (j = 1, 2)
for a polyacene chain with the OBC since the edge
bonds should be shorter. For this reason, we will only
consider the cis-phase with either the PBC or the
OBC, where the electronic wavefunctions must be either
symmetric φ(1, n) = φ(2, n) = φ(s)(n) or anti-symmetric
φ(1, n) = −φ(2, n) = φ(a)(n) for the two chains of
polyacene. We define the bond order parameter δn by
δn = (−1)n(un+1 − un), then the Hamiltonian (1) can
be solved self-consistently using the following coupled
equations to obtain the static bond configuration and the
electronic wave functions:

ε(κ)
µ φ(κ)

µ (n) = −[t0 − (−1)nαδn]φ(κ)
µ (n + 1)

−[t0+(−1)nαδn−1]φ(κ)
µ (n−1)−ηκ[t1−(−1)nt2]φ(κ)

µ (n), (5)

δn = (−1)n+1 2α

K

×
∑

µ(occ.)

[
φ(κ)

µ (n)φ(κ)
µ (n+1)− 1

2m

∑

n

φ(κ)
µ (n)φ(κ)

µ (n+1)
]
, (6)

Fig. 1. Bond alternation parameters δn of an interchain-
coupled polaron in a singly-charged polyacene chain with the
PBC. The inset shows a schematic representation of the elec-
tronic energy spectrum.

where κ = s, a. ηs = 1 for symmetric states φ
(s)
µ and

ηs = −1 for anti-symmetric states φ
(a)
µ . The summa-

tion over occupied states is for both symmetric and
anti-symmetric states; the last term in equation (6)
comes from the Lagrange multiplier which is introduced
to keep the total chain length unchanged – that is,∑

n(−1)nδn = 0, and the wavefunctions φ
(κ)
µ (n) has the

following properties:∑

n

φ(κ)
µ (n)φ(κ)

ν (n) = δµν/2,
∑

µ

φ(κ)
µ (m)φ(κ)

µ (n)=δmn/2.

(7)
Then the ground state can be written as

|G〉 =
∏

µ,σ(occ.)

a(κ)†
µ,σ |0〉, (8)

where
a(κ)†

µ,σ =
∑

n

φ(κ)
µ (n)(c†1,n,σ + ηκc†2,n,σ), (9)

c†j,n,σ =
∑

µ

[
φ(s)

µ (n)a(s)†
µ,σ + (3 − 2j)φ(a)

µ (n)a(a)†
µ,σ

]
. (10)

By solving numerically above self-consistent equa-
tions (5) and (6), we obtain Figure 1, which shows the
bond configuration {δn} of an interchain-coupled po-
laron [20], with a schematic representation of the energy
spectrum given as the inset, for a singly-charged polyacene
chain with the PBC. As a comparison, we show in Figure 2
the bond configuration of a polaron being coupled with
an interchain-coupled soliton for a singly-charged poly-
acene chain with the OBC [23]. Due to the existence of an
interchain-coupled soliton, two more localized electronic
levels appear in the electronic spectrum, while the other
four localized levels are caused by the interchain-coupled
polaron as those in the polyacene chain with PBC. Among
the four states, two (ε1u and ε2d) appear in the gap while
the other (ε1d and ε2u) appear in the valence and con-
duction bands, respectively. On the other hand, the bond
configuration of a polyacene chain with the OBC has a
symmetry of D2h [10], it has only a quasi-D2h symmetry
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Fig. 2. Bond alternation parameters δn of a polaron being
coupled with an interchain-coupled soliton in a singly-charged
polyacene chain with the OBC. The inset shows a schematic
representation of the electronic energy spectrum.

in a polyacene chain with PBC since the center of the
polaron is not yet on the sites, but on the bonds.

Now we consider a small departure {dj,n} of atoms
from the self-consistent bond configuration {δn}, – that
is, uj,n = un +(−1)ndj,n; then we can do the perturbation
order by order, as in reference [10]. The vanishing of the
first-order term in the total energy gives the self-consistent
equations (5) and (6). The second-order term of the total
energy gives the vibrational Hamiltonian, which can be
written as

Hvib = 2K
∑

κ=s,a

∑

n,n′
A

(κ)
n,n′d

(κ)
n d

(κ)
n′ +

1
2
M

∑

κ=s,a

∑

n

(ḋ(κ)
n )2,

(11)
where the elements of the vibrational matrices are as
follows:

A
(κ)
n,n′ =

1
4
(ζnδn,n′ + δn,n′±1) +

1
2
λπt0(−1)n+n′

×
(
Ξ

(κ)
n,n′ − Ξ

(κ)
n,n′−1 − Ξ

(κ)
n−1,n′ + Ξ

(κ)
n−1,n′−1

)
, (12)

where ζn = 1 for n being sites at chain ends and ζn = 2
for n being all other sites, and

Ξ
(s)
n,n′ =

∑

µ(occ.),ν(unocc.)

∑

κ=s,a

χκκ
µ,ν(n)χκκ

µ,ν(n′)

ε
(κ)
µ − ε

(κ)
ν

,

Ξ
(a)
n,n′ =

∑

µ(occ.),ν(unocc.)

∑

κ=s,a

χκκ
µ,ν(n)χκκ

µ,ν(n′)

ε
(κ)
µ − ε

(κ)
ν

, (13)

where κ = s, κ = a and κ = a, κ = s, and

χκκ′
µ,ν (n) = φ(κ′)

ν (n)φ(κ)
µ (n + 1)+ φ(κ′)

ν (n + 1)φ(κ)
µ (n). (14)

So we have the phonon frequency ω(κ) from (ω(κ))2 =
ω2

Qλ(κ), where λ(κ) are the eigenvalues of the vibrational

matrix {A(κ)
n,n′} given in equation (12) and ωQ =

√
4K/M

is the bare phonon frequency, which is about 1900 cm−1

for polyacene.

Fig. 3. The phonon spectrum of a singly-charged polyacene
chain with the PBC. The energies of the localized modes
around the polaron are indicated by arrows.

3 Localized phonons around
an interchain-coupled polaron

For a singly-charged polyacene chain with the PBC, an
interchain-coupled polaron has been obtained [20], the
staggered order parameter of the polaron, {δn}, has shown
in Figure 1, and the schematic representation of the en-
ergy spectrum is given in the inset. Accompanying with
the polaron, four extended electronic levels become local-
ized. The diagonalization of the vibrational matrix A

(κ)
n,n′

gives both the eigenvalue λ(κ) and the vibrational eigen-
wavefunction d(κ)(n). To identify the localized modes, we
define the localization factor γ =

∑
n |d(n)|4/∑n |d(n)|2

(m is the number of aromatic rings in the polyacene chain
we considered), which will decay as 1/m for an extended
vibrational mode when the size m becomes larger and
larger, while it will approach a nonzero constant for a
localized vibrational mode. We have done the calculations
from m = 100− 300, and a very good convergence for the
localization factor is reached for a polyacene composed of
m = 300 aromatic rings, for which all results presented
below are obtained.

Totally, thirteen localized modes around the
interchain-coupled polaron have been found. Their
energy positions in the phonon spectrum are shown in
Figure 3, in which lines represents the dispersion of
extended modes, which should be independent of local
distortions, then we can obtain them by the calculation
in the dimerized lattice in Appendix. In contrast to
the polyacene chain with the OBC, such as the soliton
case [10] where the structure is of a D2h symmetry and
the center of the soliton is located on a carbon atom,
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Fig. 4. The extended modes with the lowest frequency in the optical branches in the presence of a polaron, (a) ω
(s)
o (0) for the

symmetric optical branch and (b) ω
(a)
o (0) for the anti-symmetric optical branch.

Fig. 5. Symmetric localized slowly varying phonon modes (q = 0) around a polaron in a singly-charged polyacene chain with
the PBC.

the center of the polaron in a polyacene chain with the
PBC is located on a bond. Therefore, strictly speaking,
the polaron has broken the D2h symmetry due to the
alternate interchain coupling. Fortunately, if we discard
the difference on the nearest neighbor carbons due to
the alternative interchain hoppings between the two
chains, the polaron possesses the D2h symmetry. In this
sense, we call the polaron of a quasi-D2h symmetry.
Similarly, there are only four one-dimensional irreducible
representations Ag, B1g, B2u, and B3u for the model
that we are considering for a polyacene chain with the
PBC, and the phonon modes corresponding to B2u and
B3u are infrared active while the modes corresponding to
Ag and B1g are Raman active, as the soliton case [10].
As discussed below, most of vibrational modes can be
identified with one of the four one-dimensional irreducible
representations.

The extended modes with the lowest frequency in the
optical branches in the presence of a polaron, ω

(s)
o (0)

and ω
(a)
o (0), are shown in Figure 4, the energies are

ω2/ω2
Q = 0.133 and 0.324, respectively, which are same as

that obtained by the expressions for a dimerized lattice in

the Appendix. In the weak-coupling model of polyacety-
lene, ω2

o/ω2
Q = 2λ, which has a value of 0.552 for poly-

acene. Our results are much smaller than that value; this
is clearly a result of the reduction of the dimerization due
to the interchain coupling (see Fig. 16 in the Appendix).
Furthermore, it can be seen that there are four nodes cor-
responding to a phase shift of 4π in the mode ω

(s)
o (0) and

the mode ω
(a)
o (0), respectively, which indicates there are

four symmetric (g(s)
1 - g

(s)
4 ) localized modes and four anti-

symmetric (g(a)
1 - g

(a)
4 ) localized modes at q = 0 accord-

ing to Levinsons theorem [25]. Our calculation gives the
eight slowly varying localized modes as shown in Figures 5
and 6, where the explicit shapes of the slow varying modes
defined by d̃n = [dn−1 + 2dn + dn+1]/4 are depicted in-
stead of dn themselves. For the four symmetric modes,
they all have counterparts as found in polyacetylene
[10,26–29]. g

(s)
1 is the Goldstone mode corresponding to

the translation of the polaron, g
(s)
2 is the Amplitude mode

corresponding to the amplitude vibration of the polaron,
g
(s)
3 and g

(s)
4 are the third and fourth modes, respectively.

Their energies are ω2/ω2
Q = 0, 0.025, 0.086 and 0.124, and
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Fig. 6. Anti-symmetric localized slowly varying phonon modes (q = 0) around a polaron a singly-charged polyacene chain with
the PBC.

Fig. 7. Symmetric localized quickly varying phonon modes (q = π/2) around a polaron in a singly-charged polyacene chain
with the PBC. The lines are defined in the text.

the corresponding irreducible representations are B2u, Ag,

Ag, and B2u, respectively. The anti-symmetry mode g
(a)
1

of the B3u symmetry is the relative amplitude vibration,
and the mode g

(a)
2 of the B1g symmetry is the relative po-

sition vibration between the polaron structures in the two
chains of polyacene, their energies (ω2/ω2

Q = 0.111, 0.243)
depend sensitively on the interchain coupling t⊥. The
anti-symmetric modes g

(a)
3 (B3u) and g

(a)
4 (B1g) have

the energies ω2/ω2
Q = 0.301 and ω2/ω2

Q = 0.323,
respectively.

Except for the above eight slowly varying modes, we
found five quickly varying modes: the three symmetric
modes (s(s)

1 - s
(s)
3 ) are shown in Figure 7 and the two

anti-symmetric modes (s(a)
1 and s

(a)
2 ) in Figure 8. All of

these modes have a quasi-period of four sites, and can be
regarded as modes at q = π/2. Therefore, for these quickly
varying modes, we can define d̄2n+l = (−1)(n)d2n+l to
show their vibrational configurations, the solid and bro-
ken lines in Figures 7 and 8 represent d̄ for l = 1 and
l = 2, respectively. The energies and symmetries of the
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Fig. 8. Anti-symmetric localized quickly varying phonon modes (q = π/2) around a polaron in a singly-charged polyacene
chain with the PBC. The lines are defined in the text.

Fig. 9. The phonon spectrum of a singly-charged polyacene
chain with the OBC. The energies of the localized modes
around the elementary excitation are indicated by arrows.

three symmetric modes are ω2/ω2
Q = 0.384 and Ag for

s
(s)
1 , ω2/ω2

Q = 0.424 and B2u for s
(s)
2 , and ω2/ω2

Q = 0.437

and Ag for s
(s)
3 , respectively. From Figure 8, one can find

that they are not symmetric in the chain direction for the
two anti-symmetric modes, due to the existence of the al-
ternate interchain coupling. The energies of these modes
are ω2/ω2

Q = 0.408 for s
(a)
1 and ω2/ω2

Q = 0.464 for s
(a)
2 ,

respectively.

4 Localized phonons around a charged
polaron coupled with the neutral soliton

In the above section, we have discussed numerically the
localized phonon modes around a polaron in a singly-
charged polyacene chain with the PBC. In contrast to the

case of the polyacene with the PBC, a more real poly-
acene chain is opened, that is, the polyacene chain with
the OBC, in which each chain of the two chains in the
polyacene contains odd-number unit cells, for example,
nine carbon sites in each chain (totally eighteen sites) for
tetracene, eleven sites in each chain (totally twenty-two)
for pentacene. Therefore, it can be expected that a topo-
logical soliton distortion should occur even in a pristine
polyacene chain [10,23]. Then the elementary excitations
as well as the vibrational properties in a singly-charged
polyacene chain with the OBC should be quite different
from that of the chain with the PBC. For example, an
interchain polaron coupled with the neutral soliton has
been found in the singly-charged polyacene chain with the
OBC (see Fig. 2) [23], in contrast with the polyacene chain
with the PBC, where only an interchain coupled polaron
be found (see Fig. 1). In this section, we will deal with the
localized phonon modes around a charged polaron coupled
with the neutral soliton in a finite poyacene chain using
the same method introduced in Section 3.

In addition to three pairs of twofold-degenerate edge
modes, totally, seventeen localized modes have been found
around a charged polaron coupled with the neutral soliton.
Figure 9 shows their energy positions in the phonon spec-
trum. It is clear that the bond configuration has the sym-
metry D2h, see Figure 2. Similarly, the localized phonon
modes can be identified by the four one-dimensional ir-
reducible representations Ag, B1g, B2u, and B3u of D2h

group [10], and the phonon modes corresponding to B2u

and B3u are infrared active while the modes corresponding
to Ag and B1g are Raman active.

The extended modes with the lowest frequency in the
optical branches in the presence of a charged polaron cou-
pled with the neutral soliton, ω

(s)
o (0) and ω

(a)
o (0), are

shown in Figure 10, the energies are ω2/ω2
Q = 0.134

and 0.325 respectively, almost the same as that in the pres-
ence of a charged polaron in the polyacene chain with the
PBC. It can be seen that there are six nodes corresponding
to a phase shift of 6π in the mode ω

(s)
o (0) and four nodes

corresponding to a phase shift of 4π in the mode ω
(a)
o (0).

According to Levinsons theorem [25], there should be six
symmetric (G(s)

1 - G
(s)
6 ) localized modes and four anti-

symmetric (G(a)
1 - G

(a)
4 ) localized modes at q = 0.

Our calculation gives both the six symmetric localized
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Fig. 10. The extended modes with the lowest frequency in the optical branches in the presence of a charged polaron coupled

with the neutral soliton, (a) ω
(s)
o (0) for the symmetric optical branch and (b) ω

(a)
o (0) for the anti-symmetric optical branch.

Fig. 11. Symmetric localized slowly varying phonon modes (q = 0) around a charged polaron coupled with the neutral soliton
in a singly-charged polyacene chain with the OBC.

slowly varying modes and the four anti-symmetric lo-
calized slowly varying modes as shown in Figures 11
and 12, respectively. For the six symmetric modes, the
first mode G

(s)
1 , of the energy ω2/ω2

Q = 0.0 and sym-
metry B2u), is the Goldstone mode corresponding to
the translation of the charged polaron together with the
neutral soliton. The second mode G

(s)
2 , of the energy

ω2/ω2
Q = 0.003 and the symmetry B2u) is also a trans-

lational mode, but in which the polaron and the soli-
ton move toward opposite directions. The frequency of
this mode is quite small, which is consistent with the
small binding energy between the polaron and the soliton
(0.002 eV). The third one G

(s)
3 , of the energy ω2/ω2

Q =
0.016 and symmetry Ag), is the amplitude mode corre-
sponding to the amplitude vibration of both the polaron

and the soliton. Its frequency is smaller than that of the
amplitude mode g

(s)
2 (ω2/ω2

Q = 0.025) in the presence of
an insolated polaron, and that of the amplitude mode
g
(s)
2 (ω2/ω2

Q = 0.097) in the presence of an insolated soli-

ton [10]. The energies of the other three modes G
(s)
4,5,6

are ω2/ω2
Q = 0.070, 0.112, and 0.133, and their symme-

tries are Ag, B2u, and Ag, respectively. For the four anti-
symmetric localized modes, shown in Figure 12, one can
find that the shapes of these anti-symmetric modes around
a charged polaron coupled with the neutral soliton are
quite similar as those around an isolated polaron in the
polyacene chain with the PBC in Figure 6. This may im-
ply that the potential induced by the polaron is domi-
nant, compared with that induced by the soliton. The
anti-symmetric mode G

(a)
1 of the symmetry B1g is the
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Fig. 12. Anti-symmetric localized slowly varying phonon modes (q = 0) around a charged polaron coupled with the neutral
soliton in a singly-charged polyacene chain with the OBC.

relative position vibration of the polaron structures in the
two chains of polyacene, the mode G

(a)
2 of the symme-

try B3u is the relative amplitude vibration of the polaron
structures in the two chains, and G

(a)
3 of the symmetry

B1g and G
(a)
4 of the symmetry B3u are the third and

fourth modes, their energies ω2/ω2
Q = 0.106, 0.231, 0.289,

0.319 depends sensitively on the interchain coupling t⊥.
It should be stressed that the energies are slightly smaller
than those anti-symmetric modes around an isolated po-
laron, though they have similar vibrational shapes, which
should result from the effect of the soliton. Also, due to
the existence of the soliton, the frequency of the relative
amplitude vibration mode G

(a)
2 is greater than that of the

relative position vibration mode G
(a)
1 , which is different

from the case for an isolated polaron, i.e., the frequency
of the relative amplitude vibration mode g

(a)
1 is smaller

than that of the relative position vibration mode g
(a)
2 . In

the case for an isolated soliton, only one anti-symmetric
mode g

(a)
1 is found, which corresponds to relative position

vibration of the soliton. This mode is not found in the
case for the coupled charged polaron and soliton. Again,
it implies that the characteristic of the soliton is not dis-
tinct in this complex case. The anti-symmetric modes to
be similar as G

(s)
5 and G

(s)
6 are not found, due to the strong

interchain coupling, and may appear in the system with a
weak interchain coupling.

In addition to the above ten slowly varying modes,
we found seven quickly varying modes: four symmet-
ric modes (S(s)

1 - S
(s)
4 ) and three anti-symmetric mode

(S(a)
1 - S

(a)
3 ). All of these modes, shown in Figures 13

and 14, have a quasi-period of four sites, and can be re-
garded as modes at q = π/2. The energies and symme-
tries are ω2/ω2

Q = 0.381 and Au for S
(s)
1 , ω2/ω2

Q = 0.404

and B2u for S
(s)
2 , ω2/ω2

Q = 0.425 and Au for S
(s)
3 ,

and ω2/ω2
Q = 0.437 and B2u for S

(s)
4 , respectively. The

mode S
(s)
2 is appeared at the middle of the phonon gap

(ω2/ω2
Q = 0.370 for ω

(s)
a (π/2) and ω2/ω2

Q = 0.438 for

ω
(s)
o (π/2)) at q = π/2 and has the peculiar property

that all even atoms are almost fixed while odd atoms os-
cillate in alternate directions. This mode is nothing but
the staggered mode found in polyacetylene [11]. And the
mode S

(s)
4 , whose energy is just below ω

(s)
o (π/2), the edge

of optical phonon at q = π/2. The anti-symmetric modes
have energies and symmetries ω2/ω2

Q = 0.407 and B3u for

S
(a)
1 , ω2/ω2

Q = 0.421 and B1g for S
(a)
2 , and ω2/ω2

Q = 0.468

and B3u for S
(a)
3 , respectively. Compared with the neutral

polyacene, the modes t
(a)
1 and t

(a)
2 that have a quasi-period

of seven sites [10] are not found in this case, for which the
reason is unknown.

Finally, we would like to point out that there exist
three pairs of edge phonon modes, shown in Figure 15,
since we are considering a finite-length polymer chain. All
these edge modes are located above the optical phonon
continuum bands and each pair contains one mode around
the left end and its counterpart around the right end. A
recombination of these degenerate modes gives one pair
(ω2/ω2

Q = 0.510) with Ag and B2u symmetries and the
other two pairs (ω2/ω2

Q = 0.578 and 0.603) have B1g and
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Fig. 13. Symmetric localized quickly varying phonon modes (q = π/2) around a charged polaron coupled with the neutral
soliton in a singly-charged polyacene chain with the OBC.

Fig. 14. Anti-symmetric localized quickly varying phonon modes (q = π/2) around a charged polaron coupled with the neutral
soliton in a singly-charged polyacene chain with the OBC.

B2u symmetries. In total, three edge modes are infrared
active while the other three are Raman active.

5 Summary

In this paper, we have investigated the vibrational prop-
erties of polyacene. While the phonon spectrum of an uni-
form dimerized polyacene is given analytically, we obtain
numerically all localized phonons around the elementary
excitations in a singly-charged polyacene chain both with

the PBC and the OBC. The result shows that the opti-
cal branches are strongly split due to the interchain in-
teractions, but the acoustic branches are affected slightly.
There have been found totally thirteen localized phonon
modes around the charged polaron in the chain with the
PBC. Among them, eight are slowly varying modes and
five are fast varying modes. Except for two asymmetric
modes which are both infrared active and Raman active,
the other eleven localized modes are identified with one
of the four irreducible representations of the D2h group
in which five (three B2u and two B3u) modes are infrared
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Fig. 15. Three pairs of edge phonon modes. Each pair contains one mode around the left end (shown here) and one around
the right end (not shown).

active, six (four Ag and two B1g) modes are Raman ac-
tive. Furthermore, we investigate the localized vibrational
modes around a charged polaron coupled with a neutral
soliton in a singly-charged polyacene chain with the OBC,
and the coupling effect between self-trapping excitations
on the phonon spectra is discussed. There are seventeen
localized phonon modes around the complex of polaron
and soliton, among which nine modes (five B2u and four
B3u) are infrared active, and eight modes (five Ag and
three B1g) are Raman active. The shapes of the local-
ized phonons shows mainly the characteristic of polaron
for the case of a charged polaron coupled with a neutral
soliton, however, the number and frequencies of the lo-
calized modes are quite different from those for the case
of an isolated polaron. Additionally, we find three pairs
of edge phonon modes, since we are considering a finite-
length polymer chain for the case of a charged polaron cou-
pled with a neutral soliton, all are quickly varying modes,
and both infrared and Raman active. As is well known,
the localized phonon modes can be considered the finger-
print [11] of localized excitations in polymers, therefore,
the results obtained in the present investigation will be
useful to identify the characteristic of elementary excita-
tions in polyacene.

This work was supported by National Natural Science Foun-
dation of China (Nos. 90403110, 10204005, 10374017, and
10321003) and the State Ministry of Education of China
(No. 20020246006).

Appendix: Extended phonon spectra

Due to the translational symmetry, the Peierls ground
state of a neutral polyacene chain with the PBC has a
dimerized lattice configuration, that is, uj,n = (−1)nu

(j)
0 .

Let ∆j = 4αu
(j)
0 , λ = 2α2/πt0K, and t1 = t2 = t⊥/2, and

making Fourier transformation to the electron operator,
we have

H =
∑

k,σ

′ Φ†
k,σ

[
h1k −t⊥(1 + σ1)/2

−t⊥(1 + σ1)/2 h2k

]
Φk,σ

+
N

4πt0λ
(∆2

1 + ∆2
2), (A.1)

where

Φk,σ =
(

Φ1,k,σ

Φ2,k,σ

)
, Φj,k,σ =

(
cj,k,σ

cj,k+π,σ

)
,

hj,k =

(−2t0 cos k −i∆j sin k

i∆j sin k 2t0 cos k

)
, (A.2)

and σ1 is the Pauli matrix. The prime in equation (A.1)
indicates that the summation for index k runs over the
reduced Brillouin zone, i.e., k ∈ (−π/2, π/2] for an
infinite-long polyacene chain. The diagonalization of the
Hamiltonian (A.1) gives the eigenenergies and eigenfunc-
tions. Due to the electron-hole symmetry, it is clear that
the eigenstates appear in pairs, with one positive and one
corresponding negative energy states. In the case for an
infinite polyacene (t1 = t2 = t⊥/2), the energy spectrum
is same either in the alternate cis-phase ∆1 = ∆2 = ∆0

or in the trans-phase ∆1 = −∆2 = ∆0 configurations,

εk = ±Ek ± t⊥/2, (A.3)

here

Ek =
√

4t20 cos2 k + ∆2
0 sin2 k + t2⊥/4 . (A.4)

However, for a finite polyacene chain, the bond configura-
tion will always be in the cis-phase since the edge bonds
should be short ones, which is similar as the case for single
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polyacetylene chain [23]. Therefore, we will only consider
the cis-phase in below. At the cis-phase, we consider a
small departure dj,n of atoms from its equilibrium config-
uration, that is uj,n = u0 +(−1)ndj,n, then the perturbed
electronic Hamiltonian due to the departures {dj,n} is

H
′
e = −α

∑

j,n,σ

(−1)n(dj,n + dj,n+1)(c
†
j,n,σcj,n+1,σ + h.c.).

(A.5)
Making Fourier transformation

dj,n =
∑

q

e−iqndj,q

≡
∑

q

′ e−iqn[ηj,q + (−1)nξj,q], (A.6)

together with that of electronic operators, and using a
reduced Brillioun zone, we have

H
′
e = −4iα

′∑

j,k,q,σ

Φ†
j,k,σDj,k,qΦj,k−q,σ, (A.7)

where

Dj,k,q =

[
ξj,q sin q

2 cos(k − q
2 ) ηj,q cos q

2 sin(k − q
2 )

−ηj,q cos q
2 sin(k − q

2 ) −ξj,q sin q
2 cos(k − q

2 )

]
.

(A.8)
The first order of the elastic energy is given as

E(1)
p =

K

2α
∆0

∑

j,n

(dj,n + dj,n+1) =
NK

α
∆0(η1,0 + η2,0).

(A.9)
The condition for the total energy to be minimized is that
the first order perturbation of H

′
e + Hp is equal to zero,

from which we can get the self-consistent equation for the
dimerization ∆0 as follows

1
2λ

=
∫ π/2

0

2t0 sin2 k

Ek
dk. (A.10)

The solution of the self-consistent equation is shown in
Figure 16. The dimerization is reduced when the inter-
chain coupling becomes large, and there will be no dimer-
ization when the interchain coupling t⊥ beyond t0.

Having found the equilibrium condition equa-
tion (A.10), we can get the total energy of the system by
calculating further the second order perturbation. The sec-
ond order of the electronic energy is given by the formula

E(2)
e =

∑

e

|〈e|H ′
e|G〉|2

E
(0)
g − E

(0)
e

, (A.11)

the second order of the elastic energy is given by

E(2)
p = 2NK

∑

j,q

′
(
cos2

q

2
η∗

j,qηj,q + sin2 q

2
ξ∗j,qξj,q

)
,

(A.12)

Fig. 16. The dependence of the dimerization parameter δ =
∆0/2α on the interchain coupling t⊥. The dash line corre-
sponds to the parameters we adopted in this paper.

and the kinetic energy of the system is as follow

E
(2)
k =

1
2
NM

′∑

j,q

(η̇∗
j,q η̇j,q + ξ̇∗j,q ξ̇j,q). (A.13)

It is clear that we can define symmetric and anti-
symmetric vibrational variables as follows

ξ(s)
q =

1√
2
(ξ1,q + ξ2,q),

ξ(a)
q =

1√
2
(ξ1,q − ξ2,q),

η(s)
q =

1√
2
(η1,q + η2,q),

η(a)
q =

1√
2
(η1,q − η2,q), (A.14)

and the symmetric and anti-symmetric vibrations are in-
dependent, which is a result of the lattice at cis-phase.
Now we can write the total energy till the second order of
the lattice derivations.

Et/N = E0(∆0) +
1
2
M
∑

q,κ

′
(

ξ̇
(κ)∗
q η̇

(κ)∗
q

)



ξ̇
(κ)
q

η̇
(κ)
q





+ 2K
∑

q,κ

′
(

ξ
(κ)∗
q η

(κ)∗
q

)



2a

(κ)
1 (q) c(κ)(q)

c(κ)∗(q) 2a
(κ)
2 (q)








ξ
(κ)
q

η
(κ)
q



 ,

(A.15)
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where κ = s, a. For the symmetric branches

a
(s)
1 (q) =

1
2

sin2 q

2

{
1

− 2λt0

∫ π/2

−π/2

dk cos2
(
k − q

2

) EkEk−q − Λk,q + t2⊥/4
EkEk−q(Ek + Ek−q)

}
,

a
(s)
2 (q) =

1
2

cos2
q

2

{
1

− 2λt0

∫ π/2

−π/2

dk sin2
(
k − q

2

) EkEk−q + Λk,q + t2⊥/4
EkEk−q(Ek + Ek−q)

}
,

c(s)(q) = −iλt20∆0 sin q

∫ π/2

−π/2

dk
sin2(2k − q)

EkEk−q(Ek + Ek−q)
,

(A.16)

and for the anti-symmetric branches

a
(a)
1 (q) =

1
2

sin2 q

2

{
1 − 2λt0

∫ π/2

−π/2

dk cos2
(
k − q

2

)

× (EkEk−q − Λk,q − t2⊥/4)(Ek + Ek−q)
EkEk−q[(Ek + Ek−q)2 − t2⊥]

}
,

a
(a)
2 (q) =

1
2

cos2
q

2

{
1 − 2λt0

∫ π/2

−π/2

dk sin2
(
k − q

2

)

× (EkEk−q + Λk,q − t2⊥/4)(Ek + Ek−q)
EkEk−q[(Ek + Ek−q)2 − t2⊥]

}
,

c(a)(q) = −λt0 sin q

∫ π/2

−π/2

dk sin(2k − q)

×
{

it0∆0 sin(2k − q)(Ek + Ek−q)
EkEk−q[(Ek + Ek−q)2 − t2⊥]

× (Ek − Ek−q)t2⊥/4
EkEk−q[(Ek + Ek−q)2 − t2⊥]

}
, (A.17)

where Λk,q = 4t20 cos k cos(k−q)−∆2
0 sin k sin(k−q). Then

we have the phonon spectra as

[ω(κ)(q)]2 = ω2
Q

{
a
(κ)
1 (q) + a

(κ)
2 (q)

±
√
|c(κ)(q)|2 +

[
a
(κ)
1 (q) − a

(κ)
2 (q)

]2
}

, (A.18)

where +(−) corresponds to the optical (acoustic)
branches. The dispersion relation of the lattice vibrations
for the model with those adopted parameters are shown

in Figure 3 as those lines. From that figure, one can find
that the two optical branches are strongly split, arising
from the interchain interactions, while the two acoustic
branches are slightly different at Brillouin zone bound-
ary. Moreover, it is clear that there are no gap between
the optical and acoustic branches for both symmetric and
anti-symmetric spectra.

From equations (A.16−A.18), we can calculate the fre-
quency of the phonon mode with q = 0 (ω(κ)

o (0)) and
the phonon gap at the Brillouin zone boundary q =
π/2 (∆g = ω

(κ)
o (π/2) − ω

(κ)
a (π/2)). The critical point for

a gap appearing between acoustic and optical branches is
at ω

(κ)
o (π/2) = ω

(κ)
a (π/2).
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Phys. Rev. Lett. 87, 226802 (2001)
10. Y.J. Wu, H. Zhao, Z. An, C.Q. Wu, J. Phys.: Condens.

Matter 14, L341 (2002)
11. H. Jiang, X.H. Xu, X. Sun, K. Yonemitsu, Chin. Phys.

Lett. 16, 836 (1999)
12. L. Salem, H.C. Longuet-Higgins, Proc. R. Soc. London Ser.

A 235, 435 (1960)
13. S. Kivelson, O.L. Chapman, Phys. Rev. B 28, 7236 (1983)
14. M.H. Whangbo, R. Hoffman, R.B. Woodward, Proc. R.

Soc. London Ser. A 366, 23 (1979)
15. K. Tanaka, K. Ozheki, S. Nankai, T. Yamabe, H.

Shirakawa, Phys. Chem. Solids 44, 1069 (1983)
16. A.L.S. da Rosa, C.P. de Melo, Phys. Rev. B 38, 5430

(1988)
17. B. Srinivasan, S. Ramasesha, Phys. Rev. B 57, 8927 (1998)
18. C. Raghu, Y.A. Pati, S. Ramasesha, Phys. Rev. B 65,

155204 (2002)
19. I. Bozovic, Phys. Rev. B 32, 8136 (1985)
20. M.K. Sabra, Phys. Rev. B 53, 1269 (1996)
21. Z.J. Li, H.Q. Lin, K.L. Yao, Z. Phys. B 104, 77 (1997)
22. Z.J. Li, H.B. Xu, K.L. Yao, Mod. Phys. Lett. B 11, 477

(1997)
23. Z. An, C.Q. Wu, Int. J. Mod. Phys. B 17, 2023 (2003)
24. H. Zhao, Z. An, C.Q. Wu, Synthetic Met. 135, 505 (2003)
25. N. Levinson, Kgl. Danske Videnskab. Selskab, Mat.-Fys.

Medd. 25, 9 (1949)
26. C.Q. Wu, X. Sun, R. Fu, Chin. Phys. Lett. 2, 561 (1985)
27. X. Sun, C.Q. Wu, X.C. Shen, Solid State Commun. 56,

1039 (1985)
28. K.A. Chao, Y. Wang, J. Phys. C 18, L1127 (1985)
29. A. Terai, Y. Ono, J. Phys. Soc. Jpn 55, 213 (1986)
30. W.P. Su, Solid State Commun. 35, 899 (1980)


